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Let X be a compact space. For Ya compact subset of X, let C( Y) be the
space of real continuous functions on Y. For g E C(Y) define

Ig !I,= sup{i g(x)1 : x E Yl,

Let {¢1 ,... , ¢n} be a linearly independent subset of C(X) and define

n

L(A, x) = I ak¢k(X)'
k=l

The Chebyshev approximation problem on Y is: given f E C( y) to find A *
minimizing Ilf - L(A, .)111" . Such a parameter A * is called best. This approx­
imation problem is studied in [I, Chapter 3; 2: 3, Chapter 12].

DEFINITION. Let {XI,} be a sequence of compact subsets of X. We say
{Xh,} ->- X if for any x E X, there is an {x le } -+ x, Xk E X". A well known
result [I, p. 87] is the following.

THEOREM. Let f have a unique best approximation L(A,.) to f 0/1 X. Let
{Xk} ->- X and L(A k , .) be best to fon Xk , then II L(A,.) - L(A k , .)[1 -~ O.

The related problem we wish to consider is whether f having a unique best
approximation on X implies that best approximations are unique on all
sufficiently dense subsets. This is obviously the case iff is an approximant
L(A,.): we henceforth assume thatfis not an approximant.

1. SUFFICIENT CONDITIONS FOR UNIQUENESS

Let us fix f and define

M(Y, A) = {x: 11(x) - L(A, x)1 = Ilf -- L(A,')!ly, x E n.
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By continuity of If -- L(A, .)1 and compactness of Y, M(Y, A) is a closed
nonempty set. The set M( Y, A) plays a critical role in the characterization of
best approximations and in uniqueness. The following definitions are due to
Lawson [2, pp. 22-23].

DEfINITION. A subset W of Y is an error-determining set (ED set) for f
on Yif

inf{sup{lf(x) - L(A, x)1 : x E YJ : A E En}

= inf{sup{if(x) - L(A, x)[ : X W] : A E En}.

An irreducible error determining set (lED set) for f on Y is an ED set for f
on Y which has no proper subset which is an ED set on Y.
IE D sets are called "critical point sets" by Rice [3, p. 233J. It is a consequence
of (i) the characterization result of Lawson [2], or (ii) the characterization
result of Cheney [I, p. 73J and the theorem of Caratheodory [I, p. 17J that
an lED set exists, contains at most n -c- 1 points and is a subset of M( Y, A)
for all A best on Y.

LEMMA. Best approximations to f agree 011 any JED setforf.

Proof. Let A, B be best to f and let W be a set on which L(A, .) and L(B, .)
differ, say at the point x. By convexity of the set of best coefficients, (A T B)/2
is also best. Further x¢: M(Y, (A + B)/2). Hence x cannot be in an lED set
forf.

THEOREM. A sufficient condition for best approximations to f to be unique
is that the set of approximants be a Haar subspace of dimension n on an lED
set.

Proof. Let W be an lED set on which {L(A, .) : A E En} is a Haar subspace
of dimension n. ]1' W contained n or fewer points, an approximation could be
selected taking any desired value on W. Hence W contains n I points. As
all best approximations agree on W, the Haar condition implies that a best
approximation is unique.

COROLLARY. A sufficient condition for best A to be unique on Y is that the
family ofapproximations be a Haar subspace ofdimension n on M(Y, A).

2. UNIQUENESS ON SUBSETS

Iffhas a unique best approximation, there may exist {Xk } -)0 X such thatf
does not have a unique best approximation on X" . This can occur even if the
set of approximants is a Haar subspace of dimension n on an lED set forf.
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EXAMPLE. Let X =c= [- I, I],

ep(x) 0

x
L(a, x) == aep(x), and

!(x) = cos(2JJx)

=~ I x

x 0

x O.

0 x I

--I x O.

We have M(X, 0)= {O, 1, I} and since ep(O) c= 0, 0 is best. The set g, I} is an
I ED set and the set of approximants is a Haar subspace of dimension I on
g, I}. Hence 0 is a unique best approximation. We can select Y with density
arbitrarily small such that M( Y, 0) {OJ and 0 is a nonunique best approxi­
mation to / on Y.

However, if the set of approximants is a Haar subspace of dimension n on
the error extrema of the best approximation, best approximations on all
sufficiently dense subsets must be unique.

THEOREM. Let A be best t%n X and the set ofapproximations be a Haar
subspace of dimension n on M(X, A). There exists E 0 such that (f the

density of Y in X is less than E, a best approximation to / 0/1 Y is unique.

Proal Suppose not, then there is a sequence {X1Cl--~ X such that / does
not have a unique best approximation on XI, . Let {A lJ be best on XI. . A is
unique by the preceeding corollary. It follows by the first theorem that
{Ad ---+ A. By nonuniqueness of AI., there exists an lED set YI. for/on XI. on
which the Haar condition fails. By taking a subsequence if necessary we can
assume that all lED sets YI.' contain the same number of points, say m points.
The sequence Y" of m-tuples of elements of a compact set has an accumulation
point Y, assume {Y,el ---+ Y. For given x E X, define

l(x) c.= (epl(X) .... , ep,,(x)).

As YI.' is an error-determining set for / on XI.. 0 is in the convex hull of
{(j(x) - L(A k , x)).l(x) : x E YI.'} by the characterization theorem [I, p. 73].
As / - L(A, , .) ---+/ - L(A, .) and {Y,J ---+ Y, we have by continuity that 0 is
in the convex hull of {(j(x) - L(A, x)) . lex): x E Y}. Let x E Yand suppose
I!(x) -- L(A, x)' < If -- L(A, .):1 . Then there exists E > 0 such that

!!(x) -- L(A, x)l < 11/- L(A, .)11 -- E

and hence a neighbourhood N of x such that

f(y)-- L(A, y)1 < III-- L(A, .)11 - E yE N.
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For all k sufficiently large, we have
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I/(y) - L(AI" Y)] iii - L(A k , .)i!x
k

- E/2 YEN.

But this contradicts the existence of a sequence {YIJ ->- X, Yk E M(Xk , A,J.
Hence if x E Y, X E M(X, A). It then follows from the characterization
theorem that Y is an ED set for I on X and therefore contains an lED set Y'
for Ion X. As Y' C M(X, A), the Haar condition is satisfied on T. If }" has n
or fewer points, approximants could be selected to agree with f on }". This
would contradict Y' being an ED set so }" has n + 1 points. Hence Y has
n -+- 1 distinct points, call them X o "00' X n • There exist sequences {x/},
i 0'00" n such that x/ E Yk and {xl} -+ x, , i 0'00" n. Let the Haar
condition fail on the n point set (YIJ '"'-' x)'(Ic) . There is an integer j in 0'00" n
such that j(k) is j infinitely often. By taking a subset of {Y,,} if necessary we
can assume that j(k) ~~ j for all k. The Vandermonde determinant of the
basis functions evaluated at the points {Y,J '"'-' x/' is then zero for all k, hence
by continuity the Vandermonde determinant of the basis functions evaluated
at the points {Y} '"'-' Xj is zero. The Haar condition then fails on the n point
subset {Y} '"'-' Xj of M(X, A), contradicting the hypothesis of the theorem.

The theorem is proven. The subset result becomes

THEOREM. Let the family of approximations be a Haar subspace of
dimension n on M(X, A). Let {X,,} ->- X. Then for all k sufficiently large f has a
unique best approximation L(A k ,.) on X k and {L(A",.)} converges un!rorm~y

to L(A, .), the unique best approximation to f on x.
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